Let R₁ and R₂ be two relations defined as follows:

$$R_1 = \{(a, b) \in \mathbb{R}^2 : a^2 + b^2 \in Q\}$$
 and

 $R_2 = \{(a, b) \in \mathbb{R}^2 : a^2 + b^2 \notin Q\}$, where Q is the set of all rational numbers. Then : [Sep. 03, 2020 (II)]

- (a) Neither R₁ nor R₂ is transitive.
- (b) R₂ is transitive but R₁ is not transitive.
- (c) R₁ is transitive but R₂ is not transitive.
- (d) R₁ and R₂ are both transitive.
- 1. (a) For R_1 let $a = 1 + \sqrt{2}$, $b = 1 \sqrt{2}$, $c = 8^{1/4}$ $aR_1b \Rightarrow a^2 + b^2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 6 \in Q$ $bR_1c \Rightarrow b^2 + c^2 = (1 - \sqrt{2})^2 + (8^{1/4})^2 = 3 \in Q$ $aR_1c \Rightarrow a^2 + c^2 = (1 + \sqrt{2})^2 + (8^{1/4})^2 = 3 + 4\sqrt{2} \notin Q$ $\therefore R_1$ is not transitive.

For R_2 let $a = 1 + \sqrt{2}$, $b = \sqrt{2}$, $c = 1 - \sqrt{2}$ $aR_2b \Rightarrow a^2 + b^2 = (1 + \sqrt{2})^2 + (\sqrt{2})^2 = 5 + 2\sqrt{2} \notin Q$ $bR_2c \Rightarrow b^2 + c^2 = (\sqrt{2})^2 + (1 - \sqrt{2})^2 = 5 - 2\sqrt{2} \notin Q$ $aR_2c \Rightarrow a^2 + c^2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 6 \in Q$ $\therefore R_2$ is not transitive.